
Performance Comparison between Unity and D3.js
for Cross-Platform Visualization on Mobile Devices

Lorenz Kromer, Markus Wagner, Kerstin Blumenstein,
Alexander Rind, Wolfgang Aigner

St. Poelten University of Applied Sciences, Austria

Abstract

Modern data visualizations are developed as
interactive and intuitive graphic applications.
In the development process, programmers ba-
sically pursue the same goal: creating an
application with a great performance. Such
applications have to display information at
its best way in every possible situation. In
this paper, we present a performance com-
parison on mobile devices between D3.js and
Unity based on a Baby Name Explorer exam-
ple. The results of the performance analysis
demonstrated that Unity and D3.js are great
tools for information visualization. While
Unity convinced by its performance results ac-
cording to our test criteria, currently Unity
does not provide a visualization library.

1 Introduction & Related Work
Visualization systems provide interactive, visual rep-
resentations of data [8] designed to help people under-
stand complex phenomena and augment their decision-
making capabilities [18]. Given the interconnected-
ness of the current age and the increasing volumes
of collected data, there is a dire need for such sup-
port. While many usage scenarios can be identified in
scientific research and business management, systems
for personal visualization [11] and casual information
visualization [19] serve exceptionally broad audiences.
These visualizations focus less on task-driven activities
and more on curiosity and enjoyment while exploring

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes.
In: W. Aigner, G. Schmiedl, K. Blumenstein, M. Zeppelzauer
(eds.): Proceedings of the 9th Forum Media Technology 2016,
St. Pölten, Austria, 24-11-2016, published at http://ceur-ws.org

personally relevant data. Showing trends of popular
baby names, the Name Voyager [21] is a typical exam-
ple of a casual visualization.

A main challenge faced by the developers of casual
visualization systems is the heterogeneity of devices
and platforms they should support. In particular for
the casual context, mobile phones and tablets are more
suitable than classical desktop computers [5, 4, 11, 15].
Native systems, e.g., apps for Android or Apple, are
only runnable on the platform for which the code is
compiled for. Cross-platform support requires the de-
velopment on top of different software stacks and to
maintain separate code bases. One approach to ad-
dress this challenge are web-based visualizations, i.e.
using web technology such as D3.js [7] within the
browser. However, a wide-spread concern is that web-
based systems lack performance. For example, Baur
stated in a 2013 interview [3] that for big visualization
systems such as TouchWave [2], going native cannot be
avoided because “in the web it looks like a slide show”.
Besides the negative effects of interactive latency [16],
performance overheads negatively affect battery load
of mobile devices. Alternative approaches are cross-
compilers such as Unity [1], which can deploy a single
code base to native systems for multiple platforms.
Yet, a limitation of Unity is that it does not include
a software library for visualizing data [20]. These two
approaches for cross-platform visualization work very
differently during both implementation and runtime.
The choice will largely depend on the respective ap-
plication scenario but empirical data on their perfor-
mance is needed to inform such a decision.

While some research has been carried out to com-
pare the performance of different web-based visualiza-
tion technologies [14, 12, 13], no studies have been
found which compare the performance of web-based
and cross-compiled visualization approach. Neither
could we identify performance results obtained from
different target platforms.

Thus, the paper at hand, contributes a performance

The publication is equal to CEUR WS proceedings. Reference style is changed.



(a) Unity (b) D3.js

Figure 1: Shows a screenshot of the Baby Name Explorer interface implemented with (a) Unity and (b) D3.js.
Shows the circle packing chart (left) with the corresponding grouped bar chart (right) representing the frequency
per year for male (blue) and female (pink) names.

comparison between Unity (cross-compiled to native)
and D3.js (web-based) on four mobile devices. For
this, we created two implementations of a casual vi-
sualization system to explore popular baby names as
described in Section 2. Section 3 covers the implemen-
tation details and test setup. After the test results in
Section 4, we conclude our work in Section 5 and out-
line future work.

2 Visualization Design
As proof of concept we started with implementing a
simple interactive visualization setup using an open
data set of the regional government of Upper Austria
on the 50 most often used male and female baby names
from 2004 to 2013. The dataset includes the variables
name (nominal), gender (categorical), year (quanti-
tative) and count (quantitative). All these data are
merged together into a table provided as *.csv file. As
visualization concepts we combined a circle packing
chart [10] with grouped bar charts [9].

Initially, the circle packing chart shows the first let-
ters of the baby names as bubbles and its diameter
matches with the number of babies per year. A slider
is positioned at the bottom of the screen for selecting
the year to display.

By tapping a bubble, the bubble expands and the
names which are related to the first letter are shown
inside the big bubble (see Figure 1). The color of a
name bubble is related to the gender (pink := female,
blue := male) and the diameter matches the number
of babies with the name for the selected year. Dur-
ing the layout phase, the bubbles are placed using
physics-based movement like gravity and the biggest
bubble is set to the center of the screen. The cir-
cle packing chart is linked with a grouped bar chart.
The bar chart initially shows the number of babies
for all names grouped per year, split into female and

male names (using the same colors as for the bubbles).
When selecting a first letter bubble, the grouped bar
chart shows the number of babies for names starting
with the selected letter. When selecting a name bub-
ble (e.g., “Leonie”), the grouped bar chart changes to
a single bar chart presenting the number for the name
per year.

3 Implementation and Test Setup
To introduce the implementation and test setup, we
describe the used tools for implementation D3.js and
Unity, the four test devices and environments, the per-
formance criteria and desired results as well as the
measured values and methods.

3.1 Test Devices and Environments

Since we focus on cross-platform visualization, the
test devices cover a range from tablets (Nexus 9 and
iPad Air) to Smartphones (iPhone 6S+ and Galaxy S6
Edge). Both visualization systems are investigated on
the devices shown in Table 1.

When selecting the mobile test devices, we deliber-
ately choose devices with larger screen sizes, since the
presentation of the tested visualization (see Section 2)
on a screen size of 5” or small is not optimal.

The visualization is tested under Android 5.1
(Nexus 9 and Galaxy S6 Edge) and iOS 9 (iPad Air
and iPhone 6S+). In addition to the requirements of
the devices, the test concept of this paper also exam-
ines the dependencies of both visualization versions
of external components such as libraries and plug-ins,
which were used during the development process.

Unity: With the development environment of
Unity it is possible to make a project accessible for
multiple platforms. The Unity version of the Baby
Name Explorer (Figure 1a) is exported in two versions



Table 1: Overview of the dimensions of the test devices.

Device Type Screen
size

Screen
resolution Processor RAM Graphics processor

Nexus 9 Tablet 8.9” 2048 × 1536px NVIDIA Tegra K1 2 GB NVIDIA GeForce ULP
iPad Air LTE Tablet 9.7” 2048 × 1536px Apple A7 1 GB PowerVR G6430

iPhone 6S+ Smart-
phone 5.5” 1920 × 1080px Apple A9 2 GB PowerVR GT7600

Galaxy
S6 Edge

Smart-
phone 5.1” 2560 × 1440px

Samsung Exynos 7
Octa 7420 3 GB Mali-T760 MP8

(Android and iOS). The rich development environ-
ment of the game engine Unity includes a sufficient
repertoire of physics components and 3D elements.
Therefore, we did not have to use external libraries.

D3.js: Since the implementation of the visualiza-
tion in D3.js (Figure 1b) is web browser based, we
used the Google Chrome web browser as test envi-
ronment which is available on all tested devices (see
Table 1). Thus, the visualization is represented under
the same technological conditions. For the implemen-
tation of the web based version, we did not need addi-
tional JavaScript libraries, because D3.js contains all
functionalities.

3.2 Measured Values and Methods

To compare a number of software applications, com-
mon metrics and measurement points have to be de-
fined [17]. Subsequently the used methods are:

• FPS: For measuring the frames per second (FPS)
rates, time logging functions are added around
rendering methods in the code, logging the results
via logfiles or the console.

• CPU utilization: To show the difference be-
tween the hardware components, the CPU uti-
lization was observed while performing both visu-
alizations in a specific scenario and five minutes
in idle mode. Therefore, it was ensured that no
other processes were running on the device.

• Loading time of raw data: Both version (Unity
and D3.js) contain an explicit function to load the
raw data. In order to compare the raw data load-
ing from a CSV file, the elapsed time was mea-
sured between the explicit function call and end.

In relation to the technical implementation, Unity
and D3.js are strongly different. To overcome this is-
sue, we recorded the system parameters and console
logs with OS specific development systems, because
there are no uniform functions available to detect the
previously listed system parameters.

With the aforementioned measured values, both vi-
sualization systems were tested in a specific user sce-
nario. In this case, the Baby Name Explorers usage

was simulated over 60 seconds by a regular interac-
tion with the respective system. To reduce the effects
of operating system and other processes beyond user
control, this user scenario was repeated five times on
each visualization system per tested device.

4 Results
The results of the performance comparison of both ver-
sions are separated into the three measured parame-
ters, which were presented before. All the measured
values of the different test devices were compared into
an Excel sheet for preprocessing. By using MS Ex-
cel, we processed the calculation of the median values
to eliminate outliers and exported the result for each
parameter as grouped bar chart.

4.1 CPU Usage Analysis

Based on the performed measurements, Unity gener-
ates less CPU usage than D3.js. Calculating the me-
dian across all measured devices, Unity takes 22% and
D3.js takes 38%. Figure 2 illustrates a diagram to
compare the CPU usage between the tested devices in
idle mode and while performing both versions.

Figure 2: CPU usage in % in Unity (green), D3.js (or-
ange) compared to idle mode (blue) [lower is better].

During the performance analysis it was very inter-
esting to see, that the Nexus 9 tablet got noticeable
warmer than the other devices. This effect mirrors



in the device’s CPU usage. However, no temperature
measurements were carried out to investigate this ef-
fect. In general, less CPU usage is a big benefit from
the perspective of smart devices because less energy
consumption results in more battery time.

4.2 FPS analysis

The evaluation of the FPS data shows that Unity
reaches a median of 57 FPS and D3.js version achieves
a median of 51 FPS. Unity can be seen as the winner of
this criteria of the performance comparison. The de-
tailed median values of the evaluation part are shown
in Figure 3.

Figure 3: FPS rate while performing with Unity
(green) and D3.js (orange) [higher is better].

It is very prominent, that the FPS rate of the D3.js
version was pretty low on the Galaxy S6 Edge, despite
the fact that the CPU usage on this device also stayed
slightly. In contrast, the Nexus 9 tablet was the only
device which reaches higher FPS with D3.js.

4.3 Loading Time Analysis

The result of the CSV data loading time measurement
shows, that D3.js takes a median of 5.17ms. In con-
trast, Unity requires significantly more time for the
raw data loading which results in a median of 15.17ms.
Figure 4 shows the gap between both versions.

The measured time depends on the internal imple-
mentation of the loading methods of the visualizations
which is the reason of the serious differences at the
cycle times of these functions.

5 Conclusion
This study compared two different approaches for
implementing cross-platform visualizations: cross-
compilation to native code and web technology, i.e.
usage within a web browser.

For this, the Baby Name Explorer, as example of a
realistic casual visualization design, was implemented

Figure 4: CSV loading times in ms while performing
in Unity (green) and D3.js (orange) [lower is better].

in both Unity and D3.js. Our experimental compari-
son on four devices showed that FPS were comparable,
D3.js was faster in initial data transformations, and
Unity resulted in a lower CPU utilization.

In terms of developer experience, Unity’s IDE sup-
ports C# as well as JavaScript for development. The
cross-compilation and deployment of the Baby Name
Explorer for all tested platforms worked seamlessly.

D3.js code is typically developed for a web environ-
ment. Due to the variety of web browsers, web based
visualizations need to be tested on a wide selection
before being released. During our experiment both
implementations worked well.

Depending on our proof-of-concept, we demon-
strated the benefits of the use of Unity for informa-
tion visualization and cross-platform compilation in
our field of research. In the next steps we will focus
on the synchronization for collaboration and semantic
zoom [20] and to show the ability to use this framework
for visualization for the masses as called by Blumen-
stein et al. [6] as an easy to use system.

Acknowledgements

This work was supported by the Austrian Science Fund
(FWF) via the KAVA-Time and VisOnFire projects
(no. P25489 and P27975), the Austrian Ministry for
Transport, Innovation and Technology (BMVIT) un-
der the ICT of the future program via the VALiD
project (no. 845598) and under the Austrian Security
Research Programme KIRAS via the project Coura-
geous Community (no. 850196) as well as the project
seekoi (no. 1154) funded by the Internet Foundation
Austria (IPA).



References
[1] Unity – Game Engine, 2016.

https://unity3d.com/.

[2] Dominikus Baur, Bongshin Lee, and Sheelagh
Carpendale. TouchWave: kinetic multi-touch ma-
nipulation for hierarchical stacked graphs. In
Proc. 2012 ACM int. conf. Interactive Tabletops
and Surfaces, ITS, pages 255–264. ACM, 2012.

[3] Enrico Bertini, Moritz Stefaner, and Dominikus
Baur. Visualization on Mobile & Touch De-
vices. datastori.es podcast, http://datastori.
es/data-stories-25-mobile-touch-vis/,
00:41:49 to 00:46:08, July 2013.

[4] Kerstin Blumenstein, Christina Niederer, Markus
Wagner, Grischa Schmiedl, Alexander Rind, and
Wolfgang Aigner. Evaluating information visual-
ization on mobile devices: Gaps and challenges in
the empirical evaluation design space. In Proc.
6th Workshop on Beyond Time and Errors on
Novel Evaluation Methods for Visualization, BE-
LIV, pages 125–132. ACM, 2016.

[5] Kerstin Blumenstein, Markus Wagner, and Wolf-
gang Aigner. Cross-Platform InfoVis Frameworks
for Multiple Users, Screens and Devices: Require-
ments and Challenges. In Workshop on Data Ex-
ploration for Interactive Surfaces DEXIS 2015,
pages 7–11, 2015.

[6] Kerstin Blumenstein, Markus Wagner, Wolfgang
Aigner, Rosa von Suess, Harald Prochaska, Ju-
lia Püringer, Matthias Zeppelzauer, and Michael
Sedlmair. Interactive Data Visualization for Sec-
ond Screen Applications: State of the Art and
Technical Challenges. In Proc. of the Int. Sum-
mer School on Visual Computing, pages 35–48.
Frauenhoferverlag, 2015.

[7] Michael Bostock, Vadim Ogievetsky, and Jeffrey
Heer. D3: Data-Driven Documents. IEEE Trans.
Vis. and Comp. Graphics, 17(12):2301–2309, De-
cember 2011.

[8] Stuart K. Card, Jock D. Mackinlay, and Ben
Shneiderman. Readings in Information Visualisa-
tion. Using Vision to Think. Morgan Kaufmann,
1999.

[9] William S. Cleveland and Robert McGill. Graph-
ical Perception: Theory, Experimentation, and
Application to the Development of Graphical
Methods. Journal of the American Statistical As-
sociation, 79(387):531–554, 1984.

[10] Jeffrey Heer, Michael Bostock, and Vadim
Ogievetsky. A tour through the visualization zoo.
Comm. of the ACM, 53(6):59, 2010.

[11] Dandan Huang, Melanie Tory, Bon Adriel Ase-
niero, Lyn Bartram, Scott Bateman, Sheelagh
Carpendale, Anthony Tang, and Robert Wood-
bury. Personal visualization and personal visual
analytics. IEEE Trans. Vis. and Comp. Graphics,
21(3):420–433, March 2015.

[12] Donald W. Johnson and T. J. Jankun-Kelly. A
scalability study of web-native information visu-
alization. In Proc. Graphics Interface, GI, pages
163–168, Toronto, 2008. Canadian Information
Processing Society.

[13] Daniel E. Kee, Liz Salowitz, and Remco Chang.
Comparing interactive web-based visualization
rendering techniques. In Poster Proc. IEEE Conf.
Information Visualization, InfoVis, 2012.

[14] Tim Lammarsch, Wolfgang Aigner, Alessio
Bertone, Silvia Miksch, Thomas Turic, and Jo-
hannes Gärtner. A comparison of program-
ming platforms for interactive visualization in
web browser based applications. In Proc. 12th
Int. Conf. Information Visualisation, iV, pages
194–199, July 2008.

[15] Tim Lammarsch, Wolfgang Aigner, Silvia Miksch,
and Alexander Rind. Showing important facts to
a critical audience by means beyond desktop com-
puting. In Yvonne Jansen, Petra Isenberg, Jason
Dykes, Sheelagh Carpendale, and Dan Keefe, ed-
itors, Death of the Desktop—Workshop co-located
with IEEE VIS 2014, 2014.

[16] Zhicheng Liu and Jeffrey Heer. The effects of
interactive latency on exploratory visual anal-
ysis. IEEE Trans. Vis. and Comp. Graphics,
20(12):2122–2131, December 2014.

[17] J. D. Meier, Carlos Farre, Prashant Bansode,
Scott Barber, and Dennis Rea, editors. Per-
formance testing guidance for web applications:
patterns & practices. Microsoft, United States?,
2007. OCLC: ocn245241921.

[18] Tamara Munzner. Visualization Analysis and De-
sign. A K Peters Ltd, 2014.

[19] Zachary Pousman, John T. Stasko, and Michael
Mateas. Casual Information Visualization: De-
pictions of Data in Everyday Life. IEEE Trans.
Vis. and Comp. Graphics, 13(6):1145–1152, 2007.



[20] Markus Wagner, Kerstin Blumenstein, Alexan-
der Rind, Markus Seidl, Grischa Schmiedl, Tim
Lammarsch, and Wolfgang Aigner. Native cross-
platform visualization: A proof of concept based
on the Unity3D game engine. In Proc. Int. Conf.
Information Visualisation, iV, pages 39–44. IEEE
Computer Society Press, 2016.

[21] Martin Wattenberg. Baby names, visualization,
and social data analysis. In Proc. IEEE Symp.
Information Visualization, INFOVIS, pages 1–7,
October 2005.




