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Visual representations of time-oriented data
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Time is a special dimension with much more to it than a simple linear succes-
sion of consecutive moments. Time-oriented data, that is data collected over or 
related to time, are a rich source of multifaceted information. Visual representa-
tions are often used as an aid helping us to untangle the complexities of the data 
and to understand the essential information they contain. Expressive depictions 
of time-oriented data can only be designed by taking into account the special 
nature of time.

We discuss principal design aspects for conceptualizing time and time-
oriented data, and based on that, fundamental ways of visualizing time-oriented 
data will be explained. Examples of implemented visualization techniques illus-
trate the diversity of possible solutions. To assist practitioners and researchers 
in finding relevant techniques amidst this diversity, we developed the TimeViz 
Browser, an interactive visual survey of visualization for time-oriented data. 
The TimeViz Browser categorizes more than 100 visualization techniques with 
respect to the nature of the dimension of time, the character of the data, and 
the properties of the visual representation.

Today, we live in a  world full of data. Our daily life depends to a  large 
degree on our ability to efficiently work with the information contained in 
these data. However, technological advances have led to a situation where 
we collect far more data than we can make sense of. This problem has 
become known as information overload. 

As early as the 1980s, visualization pioneers recognized the enormous 
potential that modern computers would offer to address the information 
overload. Considering analytic power, graphics output, and interactive 
manipulation, they formulated the key idea behind visualization as follows:

Visualization is a method of computing. It transforms the symbolic into the 
geometric, enabling researchers to observe their simulations and compu-
tations. Visualization offers a method for seeing the unseen. It enriches the 
process of scientific discovery and fosters profound and unexpected insights. 
(McCormick, DeFanti, and Brown 1987, 3)

Gaining insight into and understanding time-oriented data are challenges 
of continued relevance. Learning from the past, comprehending the pres-
ent, and predicting the future are key themes in many fields with wide 
applications in business, science, politics, and humanities.
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In this chapter, we lay out the fundamentals of the dimension of time 
and discuss different models of how data can be connected to time. We 
outline basic strategies for designing visual representations of time and 
time-oriented data and illustrate how these basic strategies are imple-
mented in different ways by existing visualization techniques. With the 
goal of providing an overview of the wealth of available solutions, we 
designed the TimeViz Browser as a publicly available interactive website. 
It is based on a visual bibliography that currently contains brief descrip-
tions and thumbnails of more than 100 different visualization techniques 
for time-oriented data. To enable users to find the techniques relevant to 
them, the TimeViz Browser supports dynamic filtering according to vari-
ous delineating criteria. These criteria were derived from an analysis of the 
properties of time and time-oriented data.

Conceptualizing time and time-oriented data
In this section, we discuss the particularities of time and the characteris-
tics of data as key factors influencing the design of visual representations 
for time-oriented data. Here, we consider time to be the key reference 
with respect to which the data are given. 

Time is one of the most deeply entrenched phenomena for mankind. 
Perceivable by the succession of day and night and the seasons of the year, 
it influences literally every aspect of living creatures on earth. Considering 
that, it comes with no surprise that some of the earliest known artefacts 
of humans are bone engravings used as calendars (Lenz 2005). In many 
branches of science such as philosophy, physics, astronomy, or biology, 
time has been a central theme for centuries. Two of the most influential 
theories on time are Newton’s concepts of absolute vs. relative time and 
Einstein’s four-dimensional spacetime. Further information on the con-
cept and history of time can be found in Gerald James Whitrow’s What is 
time? (2003).

The dimension of time

Time is a  universal concept. No one can escape the steady progress of 
time. Yet, there is more to time than a seemingly linear progression. Upon 
a closer look, time reveals several facets, each of which play an important 
role in understanding time-dependent phenomena. The key facets to look 
at are:

•	 time primitives (instants and intervals)

•	 time arrangement (linear and cyclic)

When working with time, we usually create anchors that allow us to pin-
point certain events in the time continuum. An example is to agree on 
a specific time to meet for lunch. In this case, the anchor is a time prim-
itive in the form of an instant, a single point in time (see Figure 1). Time 
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Instant. A single 
point in time, e.g. 
12.00 noon.
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instants can be used to construct time intervals, which allow us to expand 
our view of time from simple events to phenomena that exhibit duration. 
For example, when we enter a meeting in our electronic calendar, we do 
not only have a single point in time but usually reserve a stretch of time 
delimited by a beginning and an end or a beginning and a duration, respec-
tively (see Figure 2). 

Moreover, we also need to take a look at the underlying time dimension 
that these time primitives are tied to. When thinking about time, two main 
metaphors are used. The first conceptualizes time as a linear progression 
from past to present and future (see Figure 3). The second emphasizes the 
cyclic nature of time based on natural phenomena such as the rhythms of 
night and day and the seasons, as well as human creations such as semes-
ters or fiscal years (see Figure 4). These two metaphors are of fundamen-
tal importance to the visualization of time-oriented data. Depending on 
the nature of the problem and the goals of the user, it can be beneficial 
to emphasize one point of view or the other, but both can also exist in 
parallel.

Despite the fact that the key facets mentioned are the most important 
ones to consider, they can only cover parts of the complexity of the time 
dimension. On a  more detailed level, there are further design aspects 
when modelling time, such as the scale of time (ordinal vs. discrete vs. 
continuous) and viewpoints on time (ordered vs. branching vs. multi-
ple perspectives). Moreover, the granularity of time and corresponding 
calendar systems are a complex topic. There are many issues to be taken 
into account, including irregularities in days of months and leap years, 
different time zones, and calendars in different cultures. Last but not least, 
uncertainty is another important topic of time, specifically when dealing 
with future planning. For further details, we would like to refer to Aigner 
et al. (2011), where the dimension of time is dissected in full detail.

Taking these characteristics of time into account is crucial in order to 
achieve expressive visualizations. Therefore, a  data and problem analy-
sis step is necessary in every visualization design project to identify the 
nature of the data at hand and choose or design visual representations that 
fit (Munzner 2014). For example, when we would like to visualize tasks of 
a project plan, we need to choose a visualization technique that is capable 
of representing time intervals, like a Gantt chart rather than a line plot.
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Interval. Portion 
of time with 
a duration, e.g. 
11.00 a.m. to 
3.00 p.m.
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Time-oriented data

Time, as described in the previous section, serves as the backbone of time-
oriented data. Data tuples are tied to time primitives to establish a con-
nection between time and data. Just as there are key facets of time, there 
are key characteristics of data that need to be considered when designing 
visual representations. Two of these characteristics are:
•	 frame of reference (abstract and spatial)
•	 number of variables (univariate and multivariate)

One fundamental question is whether the data tuples additionally relate 
to a spatial dimension, for example, if each was measured at a different 
location. In such cases, we have a spatial frame of reference in addition to 
time. When this is not the case, data are said to be abstract, i.e. data elem-
ents do not explicitly contain a ‘where’ aspect and are not connected to 
space. The distinction between abstract and spatial data has consequences 
for the way the data should be visualized. With spatial data, the spatial 
dimension ought to be exploited to reflect the position of data elements in 
space in addition to time. For abstract data, there is no naturally given spa-
tial mapping and it is up to the visualization designer to create an expres-
sive layout of the data.

Apart from the frame of reference, the number of time-dependent vari-
ables to be represented is an important issue. In the case of univariate data 
– that is, a single variable over time – a wide range of visualization tech-
niques exists such as line plots or bar graphs. If we have more than one data 
variable (multivariate data), things tend to get more complex and more 
sophisticated visual representations are needed to communicate the rela-
tionships involved. Because of that, the available palette of visualization 
techniques is much smaller for multivariate data than for univariate data.

In addition to the frame of reference and the number of variables, there 
are further facets to characterize data, such as the scale of variables (quan-
titative vs. qualitative) and the nature of the stored information (events vs. 
states).

Visualizing time-oriented data
As explained in the previous section, both time itself and data presented 
with respect to time can be complex and multifaceted. The enormous 
bandwidth of human visual perception opens up many possibilities for 
exploring and communicating the richness of time-oriented data. To this 
end, the temporal reference as well as the data must be represented vis-
ually. Haber and McNabb (1990) think of this process as a pipeline and 
describe it as a transformation with three steps: filtering, mapping, and 
rendering. The filtering is a data processing step to prepare the data for 
visualization. This includes data correction, interpolation, clustering, and 
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filtering operations on the data. At the heart of the visualization pipeline is 
the mapping step. In this step, the prepared data are mapped to geometric 
primitives and associated graphical properties. The final step of the visual-
ization pipeline is rendering the output (display or print). Here geometry 
and graphical properties are handed over to the graphics processor, which 
generates the visual representation on the output device.

As the mapping step largely decides about the expressiveness and effec-
tiveness of the visualization, we will next take a closer look at it. We first 
introduce basic visual variables for the mapping and then describe the 
principal ways of mapping time and time-oriented data.

Visual variables

In his seminal work, Semiology of graphics, Jacques Bertin (1983) defines 
seven visual variables for representing data visually. Bertin lists position, 
size, value, texture, colour, orientation, and shape as variables that can 
encode data. For example, the position of a dot on a chart tells us where it 
is located in the value range associated with the chart’s axes. The size of the 
dot and its colour can encode additional information.

Other researchers, including Cleveland and McGill (1986) and Mackin
lay (1986), have largely concurred with Bertin’s analysis, but made minor 
modifications and extensions. While the classic visual variables consider 
static representations, Ward, Grinstein and Keim (2015) additionally 
include motion as a dynamic visual variable, which is particularly relevant 
for time-oriented data. Figure 5 illustrates a selection of the visual varia-
bles mentioned in the literature.
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Illustration of visual variables for encoding data.
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The question that remains is which visual variables to use. Cleveland 
and McGill (1986) and Mackinlay (1986) suggest that a  visual variable’s 
suitability to encode data depends on the data’s scale (quantitative, ordi-
nal, or nominal data). For example, according to Mackinlay (1986), posi-
tion, length, and angle are top-ranked for quantitative data, whereas for 
ordinal data, position, density, and colour saturation take the lead (see 
Figure 6). Consequently, depending on the character of the dimension of 
time, different visual encodings are possible and useful.

Mapping time and data

In order to visualize time-oriented data, we first have to think about how 
to map the dimension of time. There are two principal representations:
•	 static: time is mapped spatially
•	 dynamic: time is mapped temporally

Mapping time spatially means that a visual representation of the dimen-
sion of time is embedded directly into the display space. Typically such 
visual representations do not change while the viewer observes them, 
which is why we call such visualizations of time-oriented data static. On 
the other hand, one can use physical time (i.e. the real time whose passage 
we experience) to encode the temporal dynamics of data. In such cases, 
the visual representation changes as it is viewed as an animation, and 
hence, we call them dynamic. Both static and dynamic approaches have 
advantages and disadvantages, as we will see in the next paragraphs. 

Static representations 
In static representations, time, or more precisely an interval of time, 
has a spatial embodiment on the screen or on paper. The most common 
approach is to use the horizontal display dimension (the x-axis) to represent 
time. There are, though, examples where two or more display dimensions 
are used in conjunction for mapping time. Using more display dimensions 
allows us to construct more elaborate representations of the dimension of 
time, for example, as two-dimensional spirals or three-dimensional heli-
ces, which are capable of emphasizing cyclic patterns in the data.
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The actual time-oriented data can be visualized in many different ways. 
When time is shown along the horizontal x-axis, classic charts or plots 
typically show a  time-dependent data variable along the vertical y-axis. 
For example, point plots, line plots, and bar graphs represent data values 
by varying the distance of a graphic element from the time axis. When 
two or more display dimensions are already occupied for mapping time 
(e.g. with a spiral or a helix), visual variables other than position and size 
must be used. In such cases, colour is a good choice. That means assigning 
to each point or interval on the time axis a specific colour that represents 
the relevant data value. The choice of the colours to use is not trivial and 
depends on the characteristics of the data and the visualization task. The 
ColorBrewer (<http://www.colorbrewer2.org>) is a helpful tool in assist-
ing the selection of appropriate colour scales for visualization purposes.

As an alternative to using basic visual variables to encode time-
dependent data, one can follow an approach called small multiples by 
Tufte (1983). Small multiples are visual snapshots of the data. A snapshot is 
devoted to showing an elaborate depiction of the data at a particular time. 
Only in a second step are several snapshots arranged in a temporally mean-
ingful fashion (see Figure 7). The advantage is that individual snapshots 
may be more sophisticated than a basic visual encoding. On the other 
hand, the number of snapshots (and so the number of time primitives) that 
can be shown simultaneously is limited and their size is restricted.

Dynamic representations 
In contrast to static representations, dynamic representations change over 
time in order to represent changes in the time-oriented data. For each time 
primitive in the data, an individual visual representation is generated (also 
called frames). So each frame encodes the data of a particular time point or 
interval, where visual variables are employed as needed. Once generated, 
the frames are rendered successively one after the other, which leads to 
an animation that represents the dynamics in the data as dynamic changes 
of the display. Theoretically, one could think of a one-to-one mapping of 
time steps and frames, so that the dynamic visualization represents time 
authentically. In practice, however, there is typically a need to interpolate 

Figure 7 
Small 
multiples.

http://www.colorbrewer2.org
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intermediate results in cases where only a few time steps are present, or to 
aggregate or sample the data to reduce the size of an animation when too 
many time steps exist.

The speed with which dynamic representations are presented to the 
user should match the underlying data. For data with a large number of 
observations of highly dynamic processes, animations with 15 to 25 frames 
per second are suitable. In contrast, data consisting of only a few measure-
ments of the underlying phenomenon should preferably be represented 
at a slower pace. To avoid creating a false impression of seamless change, 
a new frame can be shown every 2 to 4 seconds. Irregularly sampled data 
should be represented using an adaptive mapping.

The distinction between static and dynamic representations is impor-
tant, because they suit different visualization tasks and goals. Dynamic 
representations are good for communicating general dynamics and major 
trends in a data set. Yet, they have also been criticized (Tversky, Morrison, 
and Bétrancourt 2002; Simons and Rensink 2005). For example, in 
dynamic representations of a complex multivariate time series, users may 
have difficulty following all of the changes; the flood of information may 
be indigestible. It is smart to pair dynamic approaches with interactive 
controls that allow the user to go through the data in slow motion or fast 
forward and rewind to interesting points in time.

In contrast to animations, which show only one time primitive at 
a  time, static representations typically show many if not all time primi-
tives simultaneously. Thus, static representations have the advantage of 
providing a single-frame overview of the time domain and the associated 
data. This suits tasks such as trend detection or finding temporal patterns, 
which typically involve visual comparison of the data from several points 
in time. On the other hand, it is clear that integrating many time primitives 
and their associated data in a single image can lead to an overcrowded rep-
resentation that is difficult to interpret. In such cases, it makes sense to use 
automated data analysis methods to extract meaningful features prior to 
the visualization and to enhance the visualization with interaction tech-
niques that support the navigation in time.

In general, the visualization designer has to find a good balance of how 
much of the dimension of time and how much of the data can be commu-
nicated with a visual representation.

A brief history of visual representations for time-oriented data

Visual methods for understanding data over time have a long and vener-
able history. The earliest known visualization has been found in a mon-
astery school and dates back to the tenth century (Funkhouser 1936). It 
depicts planetary movements over time using line plots along a horizontal 
time axis. In his Chart of biography, Joseph Priestley depicted the lifetimes 
of a number of historic figures in 1765 (see Figure 8). He came up with the 
concept of using horizontal lines that span from the beginning to the end 
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of a time interval (timelines). Interestingly, he even used special symbols 
to denote temporal uncertainties in cases where the exact dates of birth 
or death were not known exactly. As intuitive as using a horizontal line 
to denote an interval might seem for us today, it was certainly different 
in Priestley’s days, as he spent four pages of text to explain how the visual 
representation is to be read.

The probably single most influential individual for data visualization 
was William Playfair (1759–1823). He single-handedly invented the major-
ity of business charts still in use today such as line plots, bar graphs, pie 
charts, or silhouette graphs (see Figure 9 for an example). 

Further, two of the most well-known historical representations of 
time-oriented data were created in the nineteenth century. First, Florence 
Nightingale’s rose charts (1858) that show causes of death of soldiers in the 
Crimean war using polar area charts (see Figure 10, overleaf ), and second, 
a flow map that depicts Napoleon’s deadly Russian campaign across space 
and time by Charles Joseph Minard in 1869 (see Figure 11, overleaf ). 

As we have seen in this brief section, the topic of visualizing time- 

Figure 8 
A very small 
specimen 
extract of Joseph 
Priestley’s 
extensive Chart of 
biography (1765).
Photograph Stephen 
Boyd Davis.

Figure 9 
Chart by William 
Playfair (1821) 
depicting wages 
(line plot), prices 
of wheat (bar 
graph), and 
historical context 
(timelines).
A letter on our 
agricultural distresses 
(1821), chart no. 1. 
Princeton University 
Library.
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oriented data has a very long and rich history. Apart from the mentioned 
direct ancestors, also different areas of the arts such as cubism, comics, 
or music and dance notations have dealt deeply with the notion of time 
and can serve as fruitful sources of inspiration for visualization design-
ers today. Interested readers can find more information about historical 
representations of time-oriented data in Boyd Davis (2012), Boyd Davis 
(2016, chapter in this volume), Rosenberg and Grafton (2010), as well as in 
Brinton (1914, 1939), Tufte (1983, 2006), and Wainer (2005).

The historical examples already illustrate the communicative power of 
visual representations of time-oriented data. While historically created by 
hand, today we can use the power and flexibility of computers to quickly 

Figure 10 
Rose charts 
showing causes 
of death in the 
Crimean War 
by Florence 
Nightingale.
Notes on matters 
affecting the health, 
efficiency, and hospital 
administration of the 
British Army: founded 
chiefly on the experience 
of the late war (1858). 
Wellcome Library, 
London, CC-BY-4.0.

Figure 11 
Napoleon’s 
Russian campaign 
of 1812 by Charles 
Joseph Minard 
(1869).
Bibliothèque nationale 
de France. GE DON-4182.
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generate expressive depictions of large amounts of data. In the recent dec-
ades a large variety of visualization techniques have been developed par-
ticularly for time-oriented data. A selection of interesting examples will be 
presented in the following paragraphs.

Contemporary visualization techniques for time-oriented data

This section illustrates how the characteristics of the dimension of time 
and the associated data can be considered when visualizing time-oriented 
data. We present several examples that individually emphasize different 
aspects of the topics discussed so far: time instants vs. intervals; linear vs. 
cyclic time; abstract vs. spatial frame of reference; univariate vs. multivar-
iate data; and static vs. dynamic representation.

Probably the oldest and surely the most well-known representation for 
time-series are line plots where time is usually mapped to the horizon-
tal axis and a quantitative variable is mapped on the vertical axis of a plot 
(Tufte 1983). A common problem when displaying real-world data is to 
find ways to deal with multivariate data when the number of time-oriented 
variables is large. Two principal ways are to show all variables in the same 
space (superimposition) or to partition the available space and show each 
variable in a  separate part (juxtaposition). In both cases, the number 
of variables that can be displayed while retaining reading precision and 
avoiding clutter is severely limited. For example, when stacking many line 
plots on top of each other, the individual plots become thin stripes, which 
no longer provide the same precision as a full-frame line plot. To mitigate 
these problems, horizon graphs have been developed by Reijner (2008).

As shown in Figure 12, the basic idea of horizon graphs is the slicing 
and layering of line plots using a technique called two-tone pseudo colour-
ing (Saito et al. 2005). In a first step, areas under the curve of the plot are 
divided into equally sized bands. Second, these bands are coloured using 
different hues to distinguish areas below and above zero (e.g. blue above 
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Horizon Graphs 
(Reijner 2008). 
a. Construction of 
a horizon graph. 
b. Due to their 
space efficiency, 
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time-dependent 
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zero and red below zero) as well as variations in brightness to represent 
different magnitudes (e.g. darker colours for high values and lighter col-
ours for low values). Optionally, the parts below zero are mirrored to even 
better make use of the available screen space. Finally, the individual bands 
are moved on top of each other. In this way, the virtual information reso-
lution of the display is increased (Lam, Munzner, and Kincaid 2007) and 
a much richer and more precise representation of a large number of time 
series plots becomes possible. User studies by Heer, Kong, and Agrawala 
(2009) show that mirroring does not have negative effects and that lay-
ered bands are more effective than the standard line for small-sized charts. 
A further development of the horizon graphs concept by Federico et al. 
(2014) combines qualitative abstractions of data with the quantitative data 
values into so-called qualizon graphs. 

Sparklines (Tufte 2006) are an allied technique that also compresses 
data into a small horizontal space. Sparklines are small, word-sized graph-
ics meant to be integrated directly into text, such as this: . 
The main idea of this technique is to more tightly integrate text with data 
visualization by interweaving them instead of laying them out separately. 
Sparklines can be integrated seamlessly into paragraphs of text, can be laid 
out as tables, or can be used for information dashboards (see Figure 13). 
Different subtypes of sparklines display data in various ways such as lines 
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AAPL 83.80 210.73 78.20 211.64
AMZN 38.70 134.52 35.03 142.25

GOOG 467.59 619.98 257.44 741.79
MSFT 28.01 30.20 14.77 35.11

2009/2010 Points
Bayern Munich 70

Schalke 04 65
Werder Bremen 61
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Fig. 7.4: Simple, word-like graphics intended to be integrated into text visualize stock market data
(top). Bottom: Soccer season results using ticks (up=win, down=loss, base=draw).
Source: Generated with the sparklines package for LATEX.

Tufte (2006) describes sparklines as simple, word-like graphics intended to be in-
tegrated into text. This adds richer information about the development of a variable
over time that words themselves could hardly convey. The visualization method fo-
cuses mainly on giving an overview of the development of values for time-oriented
data rather than on specific values or dates due to their small size and the omis-
sion of axes and labels. Sparklines can be integrated seamlessly into paragraphs of
text, can be laid out as tables, or can be used for dashboards. They are increas-
ingly adopted to present information on web pages (such as usage statistics) in
newspapers (e.g., for sports statistics), or in finance (e.g., for stock market data).
Usually, miniaturized versions of line plots (,! p. 153) and bar graphs

(,! p. 154) are employed to represent data. For the spe-
cial case of binary or three-valued data, special bar graphs can be applied that use
ticks extending up and down a horizontal baseline . One use for this
kind of data are wins and losses of sports teams where the history of a whole sea-
son can be presented using very little space. For line plots, the first and last value
can be emphasized by colored dots ( ) and printing the values themselves textually
to the left and right of the sparkline. Moreover, the minimum and maximum val-
ues might also be marked by colored dots ( ). Besides this, colored bands in the
background of the plot can be used to show normal value ranges as for example
here 4.8 8.3.
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. Sparklines are usually miniaturized versions 
of well-known chart types.

Our third example is a visualization method suitable for representing 
time cyclically. Cycle plots by Cleveland (1993) are used to emphasize both 
linear trends and cyclic patterns in a data set (see Figure 14). On the left 
chart, the seven coloured lines represent data for the same day of the week 
over four successive weeks. For comparison, the chart at right shows the 
same data day by day. With the cycle plot, it is easy to spot trends (such as 
increasing sales on Mondays) that might not be visible on a standard linear 
plot. At the same time, the linear plot emphasizes the cycles in the data. 

Visual representations can show whether cycles are present in the 
data and what the lengths of the cycles are. With the Enhanced Interactive 

2007-01-03 36 months 2009-12-31 low high volume

AAPL 83.80 210.73 78.20 211.64
AMZN 38.70 134.52 35.03 142.25

GOOG 467.59 619.98 257.44 741.79
MSFT 28.01 30.20 14.77 35.11

2009/2010 Points
Bayern Munich 70

Schalke 04 65
Werder Bremen 61

Bayer Leverkusen 59
Borussia Dortmund 57

Figure 13 
Sparklines (Tufte 2006): simple, 
word-like graphics intended to be 
integrated into text.
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Spiral technique presented by Tominski and Schumann (2008) this can be 
done interactively. The technique combines the idea of two-tone pseudo-
colouring (similar to horizon graphs) with a spiral layout of the data as 
shown in Figure 15. By interactively adjusting how much time one 360° 
cycle represents, different cycle lengths can be brought into focus. The 
existence of a cyclic feature can be easily detected by the emergence of a 
regular pattern which is perceived instantly by human visual perception.

The techniques so far have been appropriate for data that relate to 
instants (points in time). Other techniques are appropriate for data that 
relate to intervals of time. Gantt charts are a well-known and widely used 
representation technique for project planning (Gantt 1913). Tasks in a pro-
ject plan are represented as bars along a time scale and tasks that need to be 
processed in a certain order are connected by arrows. When planning for 
the future, temporal uncertainties are unavoidable and need to be consid-
ered. For example, it might not be known for sure how long a certain task 
will take or when exactly it can start. To model and represent such uncer-
tainties, Aigner et al. (2005) developed PlanningLines (see Figure  16). 
These can be thought of as bars that are held by caps on both ends. The 
glyph represents a complex set of time attributes in an integrated manner 
(earliest start and latest start by the extent of the left cap, earliest finish and 
latest finish by the right cap, and minimum and maximum duration by the 
two bars in the centre). 

Figure 15 
Enhanced 
Interactive Spiral 
(Tominski et al. 
2008). Time series 
data are drawn 
along a spiral 
for showing and 
detecting cycles in 
the data.

Figure 14 Cycle 
plots (Cleveland 
1993) allow for 
showing both, 
seasonal and 
trend components 
of a time series 
(left), which is 
hardly possible 
when using 
standard line plots 
(right).

Figure 16 
PlanningLines 
(Aigner et al. 
2005) allow the 
depiction of 
interval data 
with temporal 
uncertainties.
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Also applicable for future event data, but with different goals is the 
SpiraClock technique by Dragicevic and Huot (2002). SpiraClock’s aim is 
to fill the gap between classical calendar applications and pop-up alerts 
for calendar events. It shows future event data as bars along a spiral layout 
that resembles a clock’s face (see Figure 17). The amount of time shown in 
the future, i.e. number of hours or cycles, can be adjusted interactively. In 
contrast to the techniques presented so far, SpiraClock is a dynamic tech-
nique that updates automatically based on the current time and upcoming 
event data.

So far, we have focused on techniques for univariate data where one var-
iable is displayed at a time. Next, we will present two techniques that are 
particularly well suited for multivariate data over time. The first of these 
follows the idea of stacking a number of layers on top of each other (see 
Figure 18) and are called stacked graphs (Byron and Wattenberg 2008). 
They allow users to see both the sum of a number of variables and how 
the different variables contribute to the overall sum at each point in time.

Scatter plots are a basic and widely used visualization technique that 
shows the relationship between two variables as marks in a  Cartesian 
coordinate system. One way to use this technique for time-oriented data 
is to animate the scatter plot to show how the relationship between the 
variables changes over time. Animated scatter plots received considerable 
attention through the Gapminder Foundation’s1 Trendalyzer tool and the 
famous TED talks by Hans Rosling,2 who used this technique to present 
data on global health developments (see Figure 19 for a screenshot). Not 
just the x- and y-coordinates, but also the size and colour of bubbles can be 
used to convey data values. Moreover, one can display traces that let users 
see a path showing variables’ developments over time. VCR-like controls 
are used to start, pause, skip sections, and adjust animation speed.

What we haven’t covered so far are time-oriented data with a spatial 
frame of reference. Such data have an explicit relation not only to time, but 
also to physical space. The spatial dimensions pose additional challenges 

  1	 <http://www.gapminder.org/world/>. Accessed December, 2015.
  2	 <http://www.ted.com/speakers/hans_rosling>. Accessed December, 2015.

Figure 17 
SpiraClock 
(Dragicevic and 
Huot 2002). Future 
appointments 
are aligned along 
a spiral on the 
clock face.

Figure 18 
Stacked graph 
(Byron and 
Wattenberg 2008). 
Multiple graphs are 
stacked on top of 
each other.

http://www.ted.com/speakers/hans_rosling
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for the visual design. How can we integrate space, time, and data attributes 
in a single visual representation?

The Trajectory Wall by Tominski et al. (2012) is a technique that rep-
resents spatiotemporal movement trajectories on top of a  map display. 
Individual trajectories are represented as 3D bands that are stacked above 
a  map display. Figure 20 shows trajectories of migrating storks. A  red-
yellow-green colour scale visualizes the storks’ speed. In this way, the map 
display shows where storks move slower (red) or faster (green). But when 
they move at which speed cannot be discerned.

This question can be answered by using an interactive spatial query 
(circle in the centre of the map) that is linked to an additional radial display 
(bottom right corner). The radial display shows a cyclic time axis, in our 
case the months of the year. The speed distribution per month is shown 

Figure 19 
Trendalyzer/
animated scatter 
plot. Two data 
variables are 
mapped to the 
horizontal and 
vertical axes, 
symbol size 
represents a third 
variable, and 
animation is used 
to step through 
time.

Figure 20 
Trajectory Wall (Tominski et al. 2012). Movement patterns can be explored by 
mapping trajectories to 3D bands that are stacked above a map display.
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as coloured histogram bins. When the spatial query is moved across the 
map, the radial display is updated to show the temporal information cor-
responding to the specified query region. The map display in combination 
with the interactive query enable users to explore data with regard to spa-
tial and temporal dependencies.

In this section we have provided examples of visualization designs that 
illustrate how the conceptual issues introduced at the beginning can be 
addressed. Table 1 summarizes the techniques and categorizes them along 
the facets discussed earlier.

Table 1  Overview of presented visualization techniques
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The TimeViz Browser
The previous section gave several examples of visualization techniques for 
time-oriented data. Yet, these examples represent only a fraction of the 
rich body of existing work. As time-oriented data are common in many 
application areas, a great number of valuable techniques and tools for visu-
alizing time and associated data have been developed. The problem is how 
to find a solution that fits a user’s particular needs. As an answer to this 
problem, the TimeViz Browser has been designed. It enables practitioners 
and researchers alike to explore, investigate, and compare visualization 
techniques for time-oriented data.

The idea behind the TimeViz Browser is to bring together the visu-
alization techniques available for time-oriented data in a  single place. 
Otherwise they would be inconveniently distributed across a variety of 
conference and workshop proceedings, journals, and books. To reach 
a wide audience, the TimeViz Browser is available as a website accessible 
at browser.timeviz.net.

The TimeViz Browser provides an overview of what is possible when 

http://browser.timeviz.net/
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visualizing time-oriented data. As the diversity of possibilities is best com-
municated visually, the overview is visual in nature as well, rather than 
a textual list of references. In this sense, the TimeViz Browser is a survey 
– not an ordinary survey, but a visual survey. Importantly, a searching and 
filtering function allows users to narrow down the scope of techniques 
that interest them.

The design of the TimeViz Browser is depicted in Figure 21. The main 
view shows thumbnail pictures to provide a  compact, yet expressive 
visual summary of the available visualization techniques. The collection 
of approaches covers more than 100 exemplars. Many of them are also col-
lected in Aigner et al. (2011). The TimeViz Browser explicitly encourages 
contribution of new techniques from the community.

Each technique can also be explored in greater detail. Selecting a tech-
nique opens up the detail view. This view offers a brief abstract for the 
technique, a larger figure, and a list of relevant publications. Small icons 
indicate the technique’s place in the categorization schema (e.g. frame 
of reference: abstract vs. spatial or number of variables: univariate vs. 
multivariate). 

The filter interface (left in Figure 21) covers the data aspect (frame of 
reference: abstract vs. spatial; and number of variables: univariate vs. mul-
tivariate), the time aspect (arrangement: linear vs. cyclic; and time prim-
itives: instant vs. interval), as well as the visualization aspect (mapping: 
static vs. dynamic; and dimensionality: 2D vs. 3D ). Using these filters it 
is possible to narrow down the collection of thumbnails presented in the 
main view, for example, to techniques that use a cyclic arrangement of the 
time axis in 3D .

Figure 21 
The TimeViz 
Browser provides 
an overview 
of existing 
visualization 
techniques for 
time-oriented 
data and a filter 
interface to search 
for techniques 
with particular 
characteristics.
<http://browser.timeviz.
net>.

http://browser.timeviz.net
http://browser.timeviz.net
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With the TimeViz Browser, we have a  platform for collecting state-
of-the-art techniques and methods for visualizing time-oriented data. 
In addition to that, the TimeViz Browser also links to other surveys, for 
instance, of visual representation of trees, dynamic graphs, sets, software, 
and text documents.

Conclusion
This chapter explored the visual world of time and time-oriented data. We 
briefly characterized the dimension of time and the data associated with it. 
We described basic ways of visualizing data in general and time-oriented 
data in particular. A  collection of historical and contemporary visual
ization techniques illustrated the variety of designs already employed in 
existing work. A good way to explore this variety is the TimeViz Browser, 
which we introduced in the last part of this chapter.

Here we could only cover a fraction of the richness of the topic of vis-
ualizing time-oriented data. For more details, see the reference list, in 
particular the books by Aigner (2011) and Wills (2012), and the TimeViz 
Browser website at <http://browser.timeviz.net>.

This chapter focused on visual methods for time-oriented data. Yet, 
studying large amounts of time-oriented data typically requires sup-
port in the form of data analysis methods (Montgomery, Jennings, and 
Kulahci 2015) and interaction techniques (Tominski 2015). On a broader 
scope, integrating visual, interactive, and analytic methods is the objec-
tive of Visual Analytics research (Keim et al. 2010). The goal is to utilize 
the power of digital machinery in terms of computation and storage and 
multiply it with the strengths of humans in sense-making and creative 
problem-solving. In the light of Visual Analytics, data analysis workflows 
will change in the future. We will be able to look not only at the raw data, 
but also at features extracted analytically on the fly. Interaction techniques 
will provide us with the flexibility to create different perspectives on the 
data on demand in order to unveil patterns in subspaces and across mul
tiple dimensions.

As this vision gradually becomes reality, a  number of research chal-
lenges has to be addressed. Dealing with huge time-oriented data with 
many variables is a key challenge. On the one hand, technical aspects such 
as data management and computational efficiency are relevant topics in 
this regard. On the other hand, we know that human perception and cog-
nition has strengths and also weaknesses, but we do not yet fully under-
stand all the mechanisms involved in human sense-making processes. 
Developing integrated and well-balanced solutions based on automated 
analysis, visual representation, and interactive control is therefore still 
challenging. We are convinced that researching new Visual Analytics 
methods will make it easier for us in the future to extract valuable insight 
from time-oriented data.
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