#Motor Rehabilitation

The research area of Motor Rehabilitation at the St. Pölten UAS develops technology-assisted approaches to physical rehabilitation and promotes their widespread use in clinical practice by cooperating with industrial partners.

Projects

ACCESS

Assessing clinically relevant biomechanical biomarkers in the field to predict physical functioning and health in patients with knee osteoarthritis: a nation-wide citizen science approach.

Publications

Horst, F., Hoitz, F., Slijepcevic, D., Schons, N., Beckmann, H., Nigg, B. M., & Schöllhorn, W. I. (2023). Identification of subject-specific responses to footwear during running. Scientific Reports, 13(1), 11284. https://doi.org/10.1038/s41598-023-38090-0
Durstberger, S., Kranzl, A., & Horsak, B. (2023). Effects of three different regression-based hip joint center localization methods in adolescents with obesity on kinematics and kinetics - preliminary results of the HIPstar study. Gait & Posture, 100, 42–43. https://doi.org/10.1016/j.gaitpost.2022.11.056
Slijepcevic, D., Zeppelzauer, M., Unglaube, F., Kranzl, A., Breiteneder, C., & Horsak, B. (2023). Towards more transparency: The utility of Grad-CAM in tracing back deep learning based classification decisions in children with cerebral palsy. Gait & Posture, 100, 32–33. https://doi.org/10.1016/j.gaitpost.2022.11.045
Vulpe-Grigorasi, A. (2023). Cognitive load assessment based on VR eye-tracking and biosensors. Proceedings of the 22nd International Conference on Mobile and Ubiquitous Multimedia, 589–591. https://doi.org/10.1145/3626705.3632618
Vulpe-Grigorasi, A. (2023). Multimodal machine learning for cognitive load based on eye tracking and biosensors. 2023 Symposium on Eye Tracking Research and Applications, 1–3. https://doi.org/10.1145/3588015.3589534
Slijepcevic, D., Horst, F., Simak, M., Lapuschkin, S., Raberger, A. M., Samek, W., Breiteneder, C., Schöllhorn, W. I., Zeppelzauer, M., & Horsak, B. (2022). Explaining machine learning models for age classification in human gait analysis. Gait & Posture, 97, S252–S253. https://doi.org/10.1016/j.gaitpost.2022.07.153
Leung, V., Simone Hofbauer, Leonhartsberger, J., Kee, C., Liang, Y., & Schmied, R. (2022, 05). Influence of education systems on children’s visual behaviours as an environmental risk factor for myopia: a quantitative analysis with LIDAR-sensor tracking in classrooms. 18th International Myopia Conference, Rotterdam.
Slijepcevic, D., Horst, F., Lapuschkin, S., Horsak, B., Raberger, A.-M., Kranzl, A., Samek, W., Breitender, C., Schöllhorn, W., & Zeppelzauer, M. (2022). Explaining Machine Learning Models for Clinical Gait Analysis. ACM Transactions on Computing for Healthcare, 3(2), 14:1-14:27. https://doi.org/10.1145/3474121
Rind, A., Slijepcevic, D., Zeppelzauer, M., Unglaube, F., Kranzl, A., & Horsak, B. (2022). Trustworthy Visual Analytics in Clinical Gait Analysis: A Case Study for Patients with Cerebral Palsy. Proc. 2022 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX), 7–15. https://doi.org/10.1109/TREX57753.2022.00006
Dumphart, B., Slijepčević, D., Unglaube, F., Kranzl, A., Baca, A., Zeppelzauer, M., & Horsak, B. (2021). An automated deep learning-based gait event detection algorithm for various pathologies. Gait & Posture, 90, 50–51. https://doi.org/https://doi.org/10.1016/j.gaitpost.2021.09.026

News