#Artificial Intelligence
By using Artificial Intelligence, machines and programmes learn from experience, react to new and unforeseeable situations, and are able to solve complex tasks and put information in wider contexts – similar to humans.
Publications
Slijepcevic, D., Zeppelzauer, M., Unglaube, F., Kranzl, A., Breiteneder, C., & Horsak, B. (2023). Towards more transparency: The utility of Grad-CAM in tracing back deep learning based classification decisions in children with cerebral palsy. Gait & Posture, 100, 32–33. https://doi.org/10.1016/j.gaitpost.2022.11.045
Slijepcevic, D., Horst, F., Simak, M., Lapuschkin, S., Raberger, A. M., Samek, W., Breiteneder, C., Schöllhorn, W. I., Zeppelzauer, M., & Horsak, B. (2022). Explaining machine learning models for age classification in human gait analysis. Gait & Posture, 97, S252–S253. https://doi.org/10.1016/j.gaitpost.2022.07.153
Strebl, J., Stumpe, E., Baumhauer, T., Kernstock, L., Seidl, M., & Zeppelzauer, M. (2022). One-Pixel Instance Segmentation of Leaves. Proceedings of the Workshop of the Austrian Association for Pattern Recognition, 6.
Slijepcevic, D., Horst, F., Lapuschkin, S., Horsak, B., Raberger, A.-M., Kranzl, A., Samek, W., Breitender, C., Schöllhorn, W., & Zeppelzauer, M. (2022). Explaining Machine Learning Models for Clinical Gait Analysis. ACM Transactions on Computing for Healthcare, 3(2), 14:1-14:27. https://doi.org/10/gnt2s9
Rind, A., Slijepcevic, D., Zeppelzauer, M., Unglaube, F., Kranzl, A., & Horsak, B. (2022). Trustworthy Visual Analytics in Clinical Gait Analysis: A Case Study for Patients with Cerebral Palsy. Proc. 2022 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX), 7–15. https://doi.org/10.1109/TREX57753.2022.00006
Gebesmair, A., & Bezensek, S. (2022). Extremwetterereignisse in der medialen Berichterstattung. https://phaidra.fhstp.ac.at/o:4933
Krondorfer, P., Slijepčević, D., Unglaube, F., Kranzl, A., Breiteneder, C., Zeppelzauer, M., & Horsak, B. (2021). Deep learning-based similarity retrieval in clinical 3D gait analysis. Gait & Posture, 90, 127–128. https://doi.org/https://doi.org/10.1016/j.gaitpost.2021.09.066
Horsak, B., Simonlehner, M., Schöffer, L., Dumphart, B., Jalaeefar, A., & Husinsky, M. (2021). Overground walking in a fully immersive Virtual Reality: Preliminary results of a comprehensive study on the effects on walking biomechanics. Gait & Posture, 90, 100–101. https://doi.org/https://doi.org/10.3389/fbioe.2021.780314
Horst, F., Slijepcevic, D., Simak, M., & Schöllhorn, W. I. (2021). Gutenberg Gait Database, a ground reaction force database of level overground walking in healthy individuals. Scientific Data, 8(1), 232. https://doi.org/https://doi.org/10.1038/s41597-021-01014-6
Koch, D., Despotovic, M., Thaler, S., & Zeppelzauer, M. (2021). Where do University Graduates live? – A Computer Vision Approach using Satellite Images. Applied Intelligence, 51, 8088–8105. https://doi.org/https://doi.org/10.1007/s10489-021-02268-8