#Motor Rehabilitation

Das Forschungsgebiet Motor Rehabilitation an der FH St. Pölten entwickelt technologiegestützte Ansätze der Bewegungsrehabilitation und fördert deren breiten Einsatz in der klinischen Praxis durch die Kooperation mit Industriepartner*innen.

Projekte

PROGRESS

Validierung eines kostengünstigen und auf Smartphones basierenden 3D-Gang- und Bewegungsanalysesystems zur Erfassung der Bewegungskinematik bei Kindern mit Zerebralparese.

ACCESS

Bewertung klinisch relevanter biomechanischer Biomarker im Feld zur Vorhersage der körperlichen Funktion und Gesundheit bei Patient*innen mit Kniegelenksarthrose: Eine bundesweite Citizen Science Stu...

Publikationen

Horst, F., Hoitz, F., Slijepcevic, D., Schons, N., Beckmann, H., Nigg, B. M., & Schöllhorn, W. I. (2023). Identification of subject-specific responses to footwear during running. Scientific Reports, 13(1), 11284. https://doi.org/10.1038/s41598-023-38090-0
Slijepcevic, D., Zeppelzauer, M., Unglaube, F., Kranzl, A., Breiteneder, C., & Horsak, B. (2023). Towards more transparency: The utility of Grad-CAM in tracing back deep learning based classification decisions in children with cerebral palsy. Gait & Posture, 100, 32–33. https://doi.org/10.1016/j.gaitpost.2022.11.045
Durstberger, S., Kranzl, A., & Horsak, B. (2023). Effects of three different regression-based hip joint center localization methods in adolescents with obesity on kinematics and kinetics - preliminary results of the HIPstar study. Gait & Posture, 100, 42–43. https://doi.org/10.1016/j.gaitpost.2022.11.056
Vulpe-Grigorasi, A. (2023). Cognitive load assessment based on VR eye-tracking and biosensors. Proceedings of the 22nd International Conference on Mobile and Ubiquitous Multimedia, 589–591. https://doi.org/10.1145/3626705.3632618
Vulpe-Grigorasi, A. (2023). Multimodal machine learning for cognitive load based on eye tracking and biosensors. 2023 Symposium on Eye Tracking Research and Applications, 1–3. https://doi.org/10.1145/3588015.3589534
Slijepcevic, D., Horst, F., Simak, M., Lapuschkin, S., Raberger, A. M., Samek, W., Breiteneder, C., Schöllhorn, W. I., Zeppelzauer, M., & Horsak, B. (2022). Explaining machine learning models for age classification in human gait analysis. Gait & Posture, 97, S252–S253. https://doi.org/10.1016/j.gaitpost.2022.07.153
Slijepcevic, D., Horst, F., Lapuschkin, S., Horsak, B., Raberger, A.-M., Kranzl, A., Samek, W., Breitender, C., Schöllhorn, W., & Zeppelzauer, M. (2022). Explaining Machine Learning Models for Clinical Gait Analysis. ACM Transactions on Computing for Healthcare, 3(2), 14:1-14:27. https://doi.org/10.1145/3474121
Leung, V., Simone Hofbauer, Leonhartsberger, J., Kee, C., Liang, Y., & Schmied, R. (2022, 05). Influence of education systems on children’s visual behaviours as an environmental risk factor for myopia: a quantitative analysis with LIDAR-sensor tracking in classrooms. 18th International Myopia Conference, Rotterdam.
Rind, A., Slijepcevic, D., Zeppelzauer, M., Unglaube, F., Kranzl, A., & Horsak, B. (2022). Trustworthy Visual Analytics in Clinical Gait Analysis: A Case Study for Patients with Cerebral Palsy. Proc. 2022 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX), 7–15. https://doi.org/10.1109/TREX57753.2022.00006
Horsak, B., Simonlehner, M., Schöffer, L., Dumphart, B., Jalaeefar, A., & Husinsky, M. (2021). Overground walking in a fully immersive Virtual Reality: Preliminary results of a comprehensive study on the effects on walking biomechanics. Gait & Posture, 90, 100–101. https://doi.org/https://doi.org/10.3389/fbioe.2021.780314

News