#Artificial Intelligence

Mit künstlicher Intelligenz lernen Maschinen und Programme aus Erfahrung, reagieren auf neue, unvorhergesehen Situationen und können ähnlich wie Menschen komplexe Aufgaben bewältigen und Informationen in größere Zusammenhänge einordnen.

Projekte

IMREA - Intelligente Multimodale Immobilienanalyse

Multimodale Informationsextraktions- und maschineller Lernverfahren zur Extraktion immobilienbezogener Attribute und Parameter aus heterogenen Eingabedaten

Active deep learning for object detection

Entwicklung neuer Strategien zur Integration von Active Learning und Deep Learning für den Einsatz künstlicher Intelligenz

Plant Monitoring AI

Maschinelles Lernen und automatische Vorhersagemodelle zur Früherkennung von Pflanzenstress für eine höhere Nachhaltigkeit in der Landwirtschaft

Publikationen

Horsak, B., Simonlehner, M., Schöffer, L., Maureder, J., Schwab, C., Raberger, A. M., Zeller, M., & Husinsky, M. (2020). Applicability and usability of an immersive virtual reality-based balance control exergame for prosthetic users: A pilot study with healthy individuals. Gait & Posture. ESMAC 29th Annual Meeting, Virtual Meeting. https://doi.org/10.1016/j.gaitpost.2020.07.113
Horsak, B., Dumphart, B., Slijepcevic, D., & Zeppelzauer, M. (2020). Explainable Artificial Intelligence (XAI) und ihre Anwendung auf Klassifikationsprobleme in der Ganganalyse. Abstractband Des 3. GAMMA Kongress. 3. GAMMA Kongress, München, Deutschland.
Horst, F., Slijepcevic, D., Zeppelzauer, M., Raberger, A. M., Lapuschkin, S., Samek, W., Schöllhorn, W. I., Breiteneder, C., & Horsak, B. (2020). Explaining automated gender classification of human gait. Gait & Posture, 81, 159–160. https://doi.org/10.1016/j.gaitpost.2020.07.114
Oliveira, V. A. D. J., Stoiber, C., Grüblbauer, J., Musik, C., Ringot, A., & Gebesmair, A. (2020). SAMBAVis: Design Study of a Visual Analytics Tool for the Music Industry Powered by YouTube Comments. Eurovis 2020, Norrköping, Sweden.
Slijepcevic, D., Zeppelzauer, M., Schwab, Caterine, Raberger, A.-M., Breitender, C., & Horsak, B. (2020). Input Representations and Classification Strategies for Automated Human Gait Analysis. Gait & Posture, 76, 198–203. https://doi.org/10/ghz24x
Horsak, B., Schwab, C., Leboeuf, F., & Kranzl, A. (2020). Reliability of walking and stair climbing kinematics in a young obese population using a standard kinematic and the CGM2 model. Gait & Posture, 83(96–99). https://doi.org/10.1016/j.gaitpost.2020.10.017
Bernard, Jürgen, Hutter, M., Sedlmair, M., Zeppelzauer, Matthias, & Munzner, Tamara. (2020). A Taxonomy of Property Measures to Unify Active Learning and Human-Centered Approaches To Data Labeling. ACM Transactions on Interactive Intelligent Systems (TiiS), to appear.
Horsak, B., Slijepcevic, D., Raberger, A.-M., Schwab, C., Worisch, M., & Zeppelzauer, M. (2020). GaitRec, a large-scale ground reaction force dataset of healthy and impaired gait. Scientific Data, 7:143(1), 1–8. https://doi.org/10/gh372d
Koch, D., Despotovic, M., Döller, M., Leiber, S., & Zeppelzauer, M. (2020). Computer Vision in Building Research: An Application for Prediction of Condition and Costs of a Property. Building Research & Information, Submitted.
Despotovic, M., Koch, D., Leiber, S., Döller, M., Sakeena, M., & Zeppelzauer, M. (2019). Prediction and analysis of heating energy demand for detached houses by computer vision. Energy & Buildings, 193, 29–35. https://doi.org/10/fsxn

News