#Digital Health

Informations- und Kommunikationstechnologie spielt im Gesundheitswesen eine immer größere Rolle. Digital-Health-Forschung bewegt sich an der Schnittstelle von Gesundheit, Sozialem und Digitalisierung – Resultate sind unter anderem Apps für das Gesundheitswesen und verbesserte Verfahren für Forschung, Diagnose, Therapie und Rehabilitation.

Projekte

DICHTE – Ausbildung von Gesundheitsteams durch digital unterstützte, interprofessionelle Zusammenarbeit

Digitale Methoden, die akademisches Personal aus dem Gesundheits- und Sozialbereich in der Organisation personen-zentrierter, interprofessioneller Lehre unterstützen.

DiabPeerS

Verbesserung der glykämischen Kontrolle bei Patient*innen mit Typ-2-Diabetes mellitus durch Peer Support Instant Messaging Service: eine randomisierte kontrollierte Studie (DiabPeerS)

Publikationen

Horst, F., Hoitz, F., Slijepcevic, D., Schons, N., Beckmann, H., Nigg, B. M., & Schöllhorn, W. I. (2023). Identification of subject-specific responses to footwear during running. Scientific Reports, 13(1), 11284. https://doi.org/10.1038/s41598-023-38090-0
Durstberger, S., Kranzl, A., & Horsak, B. (2023). Effects of three different regression-based hip joint center localization methods in adolescents with obesity on kinematics and kinetics - preliminary results of the HIPstar study. Gait & Posture, 100, 42–43. https://doi.org/10.1016/j.gaitpost.2022.11.056
Slijepcevic, D., Zeppelzauer, M., Unglaube, F., Kranzl, A., Breiteneder, C., & Horsak, B. (2023). Towards more transparency: The utility of Grad-CAM in tracing back deep learning based classification decisions in children with cerebral palsy. Gait & Posture, 100, 32–33. https://doi.org/10.1016/j.gaitpost.2022.11.045
Vulpe-Grigorasi, A. (2023). Cognitive load assessment based on VR eye-tracking and biosensors. Proceedings of the 22nd International Conference on Mobile and Ubiquitous Multimedia, 589–591. https://doi.org/10.1145/3626705.3632618
Vulpe-Grigorasi, A. (2023). Multimodal machine learning for cognitive load based on eye tracking and biosensors. 2023 Symposium on Eye Tracking Research and Applications, 1–3. https://doi.org/10.1145/3588015.3589534
Slijepcevic, D., Horst, F., Simak, M., Lapuschkin, S., Raberger, A. M., Samek, W., Breiteneder, C., Schöllhorn, W. I., Zeppelzauer, M., & Horsak, B. (2022). Explaining machine learning models for age classification in human gait analysis. Gait & Posture, 97, S252–S253. https://doi.org/10.1016/j.gaitpost.2022.07.153
Höld, E., Grüblbauer, J., Wiesholzer, M., Wewerka-Kreimel, D., Stieger, S., Kuschei, W., Kisser, P., Gützer, E., Hemetek, U., Ebner-Zarl, A., & Pripfl, J. (2022). Improving glycemic control in patients with type 2 diabetes mellitus through a peer support instant messaging service intervention (DiabPeerS): study protocol for a randomized controlled trial. Trials, 23(1), 308. https://doi.org/10.1186/s13063-022-06202-2
Leung, V., Simone Hofbauer, Leonhartsberger, J., Kee, C., Liang, Y., & Schmied, R. (2022, 05). Influence of education systems on children’s visual behaviours as an environmental risk factor for myopia: a quantitative analysis with LIDAR-sensor tracking in classrooms. 18th International Myopia Conference, Rotterdam.
Rind, A., Slijepcevic, D., Zeppelzauer, M., Unglaube, F., Kranzl, A., & Horsak, B. (2022). Trustworthy Visual Analytics in Clinical Gait Analysis: A Case Study for Patients with Cerebral Palsy. Proc. 2022 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX), 7–15. https://doi.org/10.1109/TREX57753.2022.00006
Slijepcevic, D., Horst, F., Lapuschkin, S., Horsak, B., Raberger, A.-M., Kranzl, A., Samek, W., Breitender, C., Schöllhorn, W., & Zeppelzauer, M. (2022). Explaining Machine Learning Models for Clinical Gait Analysis. ACM Transactions on Computing for Healthcare, 3(2), 14:1-14:27. https://doi.org/10.1145/3474121

News